JORNADES D'INTRODUCCIÓ ALS SISTEMES DINÀMICS I A LES EDP'S (JISD2010)
The eighth edition of the JORNADES D'INTRODUCCIÓ ALS SISTEMES DINÀMICS I A LES EDP'S (JISD2010) will be held in Barcelona from June 14th to 23rd 2010 at the Universitat Politècnica de Catalunya (UPC).
- https://dynamicalsystems.upc.edu/ca/esdeveniments/congressos/2010/jornades-dintroduccio-als-sistemes-dinamics-i-a-les-edps-jisd2010
- JORNADES D'INTRODUCCIÓ ALS SISTEMES DINÀMICS I A LES EDP'S (JISD2010)
- 2010-06-14T09:00:00+02:00
- 2010-06-23T13:30:00+02:00
- The eighth edition of the JORNADES D'INTRODUCCIÓ ALS SISTEMES DINÀMICS I A LES EDP'S (JISD2010) will be held in Barcelona from June 14th to 23rd 2010 at the Universitat Politècnica de Catalunya (UPC).
14/06/2010 a 09:00 fins a 23/06/2010 a 13:30 (Europe/Madrid / UTC200)
Room 102 of the FME building (Facultat de Matemàtiques i Estadística), at C/ Pau Gargallo, n. 5 Barcelona, 08028
Announcement of the eighth
JORNADES D'INTRODUCCIÓ ALS SISTEMES DINÀMICS I A LES EDP'S (JISD2010)
Barcelona, June 14-23, 2010
The eighth edition of the JORNADES D'INTRODUCCIÓ ALS SISTEMES DINÀMICS I A LES EDP'S (JISD2010) will be held in Barcelona from June 14th to 23rd 2010 at theUniversitat Politècnica de Catalunya (UPC).
The courses will be taught by Massimiliano Berti, Tim Myers, Jean-Michel Roquejoffre, and Alfonso Sorrentino, within the Master in Applied Mathematics
These courses are supported by the grant Ayuda de movilidad asociada a los Masters oficiales (UPC).
There will be some *financial support* available for this edition. Deadline to apply for financial support: April 30, 2010 (see Registration).
REGISTRATION FORM eighthJISD'2010
You can see the courses' schedule here
Contents
Courses will be held in the room 102 of the FME building (Facultat de Matemàtiques i Estadística), at C/ Pau Gargallo, n. 5 Barcelona, 08028.
Course | Abstract |
Partial differential equations with fractional diffusion Jean-Michel Roquejoffre (Univ. Paul Sabatier. Toulouse III) (Syllabus) | The modelling of long distance effects in transport phenomena sometimes involves fractional diffusion operators. The goal of this course is to discuss various nonlinear PDE's involving the fractional laplacian, or more general operators, and study their qualitative properties. Sometimes the results are close to those obtained for standard diffusion models. In other situations, notable differences occur. |
The theory of phase transition is well established, following Stefans pioneering work on mod- elling the freezing of sea ice in the 1890s. Phase change (or Stefan) problems are a specific form of moving boundary problem with a rich mathematical theory and numerous practical applications (e.g. melting and thawing, solidification of steel and chemical reactions). This course will deal with the modelling, theory and applications of Stefan problems. | |
New connections between dynamical systems and Hamiltonian PDEs Massimiliano Berti (Univ. Federico II) (Syllabus) | Many partial differential equations arising in physics can be seen as infinite dimensional Hamiltonian systems. Main examples are the nonlinear wave and Schrödinger equations, the beam, the membrane and the Kirkhoff equations in elasticity theory, the Euler equations of hydrodynamics as well as their approximate models like the KdV, the Benijamin-Ono, the Boussinesq, the K-P equations, etc.... |
In this course we shall present Mather and Mañé's variational approaches to the study of convex Lagrangian (and Hamiltonian) systems, and discuss their connection with more classical results from KAM theory, Hamilton-Jacobi equation, symplectic geometry, etc...
|
(*) For further details, please contact Xavier.Cabréupc.edu, Amadeu.Delshamsupc.edu, Mar.Gonzalezupc.edu, or Tere.M-Searaupc.edu
Comparteix: